185 research outputs found

    Client perspectives on the music experience in music-centered guided imagery and music (GIM)

    Get PDF

    A Comparison of Principal Self-Efficacy and Assessment Ratings by Certified Staff: Using Multi-Rater Feedback as Part of a Statewide Principal Evaluation System

    Get PDF
    A vast body of research supports the notion that school leadership is the second most influential factor on student achievement, behind only the classroom teacher (Davis & Darling-Hammond, 2012; Lynch, 2012; Mendels & Mitgang, 2013; Miller, 2013; Pannell, Peltier-Glaze, Haynes, Davis, & Skelton, 2015). Lawmakers have begun to recognize the significance of the principal’s impact on student achievement, and while waiting on reauthorization of federal education legislation, the United States Department of Education (USDE) included a principal evaluation component in the requirements for states to waive certain provisions of the No Child Left Behind Act (NCLB) of 2001. To request flexibility, states were required to develop a principal evaluation system that met certain criteria as outlined by the USDE, including the use of student outcomes as a major component of the evaluation system

    An Exploratory Evaluation of UAS Detect and Avoid Operations in the Terminal Environment

    Get PDF
    New technical standards for Unmanned Aircraft Systems (UAS) detect and avoid (DAA) systems mark recent progress toward realizing the goal of full integration of UAS into the National Airspace System (NAS). The DAA system is intended to provide a means of compliance with operating regulations that required pilots on board manned aircraft to remain "well clear" of other aircraft which is accomplished through out-the-window visual acquisition of other aircraft and application of a subjective judgment of safe separation. The requirements for the DAA system, including the specification of a DAA well clear threshold as well as functional requirements for detecting, tracking, alerting and guidance processing, and displays, are specified in DO-365, Minimum Operational Performance Standards (MOPS) for DAA Systems developed within RTCA Special Committee 228 (SC-228). Intended as the first in a series of phased versions, these requirements are frequently referred to as the "Phase 1" DAA system. The Phase 1 DAA system is limited for use by aircraft transitioning to and from Class A or special use airspace, through Class D, E, and G airspace. In particular, the Phase 1 DAA MOPS are not intended for terminal airspace operations, a critical gap for enabling a full range of UAS operations. The application of the Phase 1 DAA system and DAA well clear threshold within the terminal area is predicted to result in a high number of unnecessary alerts when the UAS is safely separated from other traffic. The goal of the present study was to examine pilot performance and operational issues related to the operation of the Phase 1 DAA system in a terminal area. This experiment was intended as an exploratory study that would be used to inform the development of a new terminal area-specific DAA well clear definition, and associated alerting and guidance requirements. The two main objectives of this study were to: 1) characterize pilot behavior in the terminal environment with the Phase 1 DAA system, and 2) investigate the effect of modifications to the Phase 1 DAA alerting and guidance structure. In particular, the authors were interested in determining whether the removal of specific alerting and guidance levels, without changing the DAA well clear definition or alerting thresholds, would impact pilot performance while conducting terminal operations. The results indicate that the Phase 1 well clear definition and alerting and guidance resulted in frequent alerting that degraded pilots' ability to discriminate between encounters where another aircraft was safely separated versus when a maneuver was necessary. The resulting impact on pilot performance was slower response times and higher frequency and severity of losses of DAA well clear compared to those observed for experiments examining pilot performance in the en route environment. There was no significant effect of alerting and guidance display configuration on pilot performance

    Evaluating evidence-based content, features of exercise instruction, and expert involvement in physical activity apps for pregnant women: systematic search and content analysis

    Get PDF
    Background: Guidelines for physical activity and exercise during pregnancy recommend that all women without contraindications engage in regular physical activity to improve both their own health and the health of their baby. Many women are uncertain how to safely engage in physical activity and exercise during this life stage and are increasingly using mobile apps to access health-related information. However, the extent to which apps that provide physical activity and exercise advice align with current evidence-based pregnancy recommendations is unclear. Objective: This study aims to conduct a systematic search and content analysis of apps that promote physical activity and exercise in pregnancy to examine the alignment of the content with current evidence-based recommendations; delivery, format, and features of physical activity and exercise instruction; and credentials of the app developers. Methods: Systematic searches were conducted in the Australian App Store and Google Play Store in October 2020. Apps were identified using combinations of search terms relevant to pregnancy and exercise or physical activity and screened for inclusion (with a primary focus on physical activity and exercise during pregnancy, free to download or did not require immediate paid subscription, and an average user rating of ≥4 out of 5). Apps were then independently reviewed using an author-designed extraction tool. Results: Overall, 27 apps were included in this review (Google Play Store: 16/27, 59%, and App Store: 11/27, 41%). Two-thirds of the apps provided some information relating to the frequency, intensity, time, and type principles of exercise; only 11% (3/27) provided this information in line with current evidence-based guidelines. Approximately one-third of the apps provided information about contraindications to exercise during pregnancy and referenced the supporting evidence. None of the apps actively engaged in screening for potential contraindications. Only 15% (4/27) of the apps collected information about the user’s current exercise behaviors, 11% (3/27) allowed users to personalize features relating to their exercise preferences, and a little more than one-third provided information about developer credentials. Conclusions: Few exercise apps designed for pregnancy aligned with current evidence-based physical activity guidelines. None of the apps screened users for contraindications to physical activity and exercise during pregnancy, and most lacked appropriate personalization features to account for an individual’s characteristics. Few involved qualified experts during the development of the app. There is a need to improve the quality of apps that promote exercise in pregnancy to ensure that women are appropriately supported to engage in exercise and the potential risk of injury, complications, and adverse pregnancy outcomes for both mother and child is minimized. This could be done by providing expert guidance that aligns with current recommendations, introducing screening measures and features that enable personalization and tailoring to individual users, or by developing a recognized system for regulating apps

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p

    TXS 0506+056 with Updated IceCube Data

    Get PDF
    Past results from the IceCube Collaboration have suggested that the blazar TXS 0506+056 is a potential source of astrophysical neutrinos. However, in the years since there have been numerous updates to event processing and reconstruction, as well as improvements to the statistical methods used to search for astrophysical neutrino sources. These improvements in combination with additional years of data have resulted in the identification of NGC 1068 as a second neutrino source candidate. This talk will re-examine time-dependent neutrino emission from TXS 0506+056 using the most recent northern-sky data sample that was used in the analysis of NGC 1068. The results of using this updated data sample to obtain a significance and flux fit for the 2014 TXS 0506+056 "untriggered" neutrino flare are reported

    Conditional normalizing flows for IceCube event reconstruction

    Get PDF

    Galactic Core-Collapse Supernovae at IceCube: “Fire Drill” Data Challenges and follow-up

    Get PDF
    The next Galactic core-collapse supernova (CCSN) presents a once-in-a-lifetime opportunity to make astrophysical measurements using neutrinos, gravitational waves, and electromagnetic radiation. CCSNe local to the Milky Way are extremely rare, so it is paramount that detectors are prepared to observe the signal when it arrives. The IceCube Neutrino Observatory, a gigaton water Cherenkov detector below the South Pole, is sensitive to the burst of neutrinos released by a Galactic CCSN at a level >10σ. This burst of neutrinos precedes optical emission by hours to days, enabling neutrinos to serve as an early warning for follow-up observation. IceCube\u27s detection capabilities make it a cornerstone of the global network of neutrino detectors monitoring for Galactic CCSNe, the SuperNova Early Warning System (SNEWS 2.0). In this contribution, we describe IceCube\u27s sensitivity to Galactic CCSNe and strategies for operational readiness, including "fire drill" data challenges. We also discuss coordination with SNEWS 2.0

    All-Energy Search for Solar Atmospheric Neutrinos with IceCube

    Get PDF
    The interaction of cosmic rays with the solar atmosphere generates a secondary flux of mesons that decay into photons and neutrinos – the so-called solar atmospheric flux. Although the gamma-ray component of this flux has been observed in Fermi-LAT and HAWC Observatory data, the neutrino component remains undetected. The energy distribution of those neutrinos follows a soft spectrum that extends from the GeV to the multi-TeV range, making large Cherenkov neutrino telescopes a suitable for probing this flux. In this contribution, we will discuss current progress of a search for the solar neutrino flux by the IceCube Neutrino Observatory using all available data since 2011. Compared to the previous analysis which considered only high-energy muon neutrino tracks, we will additionally consider events produced by all flavors of neutrinos down to GeV-scale energies. These new events should improve our analysis sensitivity since the flux falls quickly with energy. Determining the magnitude of the neutrino flux is essential, since it is an irreducible background to indirect solar dark matter searches
    corecore